Polar And Rectangular Coordinates:

A. Rectangular coordinates are what most people use when graphing coordinates. Given the point (a,b) you move over 'a' spaces on the x-axis, and then up or down 'b' spaces on the y-axis.

B. Polar Coordinates are the same points as rectangular coordinates, only they are expressed in terms of 'r' and 'θ' as the point (r, θ). Here is a picture of the relationship between polar and rectangular coordinates:

\[r = \sqrt{a^2 + b^2} \]

\[\theta = \tan^{-1} \left(\frac{b}{a} \right) \]

As you can see, r is the hypotenuse and θ is the angle.

C. Change from Rectangular to Polar:

1. To change from rectangular coordinates you should be familiar with the basic trigonometric properties and also Pythagorean Triples.

2. \(r = \sqrt{a^2 + b^2} \)

3. \(\theta = \tan^{-1} \left(\frac{b}{a} \right) \)

Ex [1] If \((2,2) = (r, \theta)\), then \(\theta = \) _______ (degrees)

a. The answer is \(\tan^{-1}(2/2) \) or \(\tan^{-1}(1) = 45 \) degrees.

Ex [2] If \((6,-8) = (r, \theta)\), then \(r = \) _______

a. You should know the Pythagorean Triple (6,8,10). The answer is 10.

b. If you don't know this, then you can see that

\[\sqrt{6^2 + (-8)^2} = \sqrt{100} = 10 \]
D. Changing from Polar to Rectangular

1. Like above, you need to know *basic trigonometric properties*.

2. \(x = r \cos \theta \)

3. \(y = r \sin \theta \)

Ex [1] If \((4, \frac{\pi}{3}) = (x, y) \) then \(y = \) ______.

a. The answer is \(4 \sin \frac{\pi}{3} \) which is \(4 \left(\frac{\sqrt{3}}{2} \right) \) which is \(2\sqrt{3} \).

Ex [2] If \((6, 60^\circ) = (x, y) \) then \(x = \) ______.

a. The answer is \(6 \cos 60^\circ = 6 \times \frac{1}{2} = 3 \).